La neurobiología del asesino: aspectos neuroanatómicos, genéticos, bioquímicos, extrínsecos y sociales
DOI:
https://doi.org/10.47741/17943108.370Palabras clave:
Asesinos, trastornos del comportamiento, neurología forense, conducta criminal, psicopatologíaResumen
El cuestionamiento del por qué alguien querría asesinar a otra persona aún no tiene una respuesta única: ¿supervivencia, odio, placer, venganza? Frente a este fenómeno, las neurociencias ofrecen un espacio de comprensión relevante y actual para dar respuesta a este interrogante. Diversos estudios clínicos y en neuroimagen han mostrado diversas alteraciones anatómicas, bioquímicas, genéticas y su relación con una variedad de redes neuronales asociadas a conductas agresivas. Subregiones en
la corteza prefrontal, la amígdala, el hipocampo y el lóbulo temporal juegan un papel importante en el desarrollo y el funcionamiento de la biología de la agresión. Variaciones genéticas en la regulación de proteínas y neurotransmisores tales como la serotonina y la dopamina han sido establecidas como mediadores en las conductas agresivas y homicidas. Las interacciones epigenéticas y los mediadores sociales representan importantes factores de riesgo adicionales para la agresividad. El presente artículo sistematiza algunos de los factores que influyen en la conducta homicida. Delimita sus factores de riesgo y correlato neurobiológico, así como aporta información basada en evidencia que ayude en la prevención de dichos comportamientos, la comprensión multidimensional del delito y el desarrollo de intervenciones efectivas fundamentadas en las neurociencias cognitivas forenses.
Descargas
Citas
Aguilar-Bustamante, M., & Correa-Chica, A. (2017). Análisis de las variables asociadas al estudio del liderazgo: una revisión sistemática de la literatura. Universitas Psychologica, 16(1), 1-13. https://doi.org/10.11144/Javeriana.upsy16-1.avae
Alcázar Córcoles, M. Á. (2007). Patrones de conducta y personalidad antisocial en adolescentes: estudio transcultural: El Salvador, México y España. [Tesis Doctoral]. Universidad Autónoma de Madrid. https://repositorio.uam.es/bitstream/handle/10486/1702/6668_alcazar_corcoles.pdf
Aluja, A., Garcia, L. F., Blanch, A., De Lorenzo, D., & Fibla, J. (2009). Impulsive-disinhibited personality and serotonin transporter gene polymorphisms: association study in an inmate’s sample. Journal of Psychiatric Research, 43(10), 906-914. https://doi.org/10.1016/j.jpsychires.2008.11.008
Anckarsäter, H. S. (2005). Clinical neuropsychiatric symptoms in perpetrators of severe crimes against persons. Nordic Journal of Psychiatry, 59(4), 246-252. https://doi.org/10.1080/08039480500213709
Archer, J. (2009). The nature of human aggression. International Journal of Law and Psychiatry, 32(4), 202-208. https://doi.org/10.1016/j.ijlp.2009.04.001
Barbas, H., Zikopoulos, B., & Timbie, C. (2011). Sensory pathways and emotional context for action in primate prefrontal cortex. Biological Psychiatry, 69(12), 1133-1139. https://doi.org/10.1016/j.biopsych.2010.08.008
Barnes, J. C., Beaver, K. M., & Boutwell, B. B. (2013). A functional polymorphism in a serotonin transporter gene (5-HTTLPR) interacts with 9/11 to predict guncarrying behavior. Plos One, 8(8), e70807. https://doi.org/10.1371/journal.pone.0070807
Baron-Cohen, S. (2012). The science of evil: On empathy and the origins of cruelty. Basic Books. https://www.goodreads.com/book/show/11044200-the-science-of-evil
Bechara, A., Damasio, H., Damasio, A. R., & Lee, G. P.(1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, 19(13), 5473-5481. https://doi.org/10.1523/JNEUROSCI.19-13-05473.1999
Beck, A., & Heinz, A. (2013). Alcohol-related aggression—social and neurobiological factors. Deutsches Ärzteblatt International, 110(42), 711. https://doi.org/10.3238/arztebl.2013.0711
Bertone, M. S., Diaz-Granados, E. A., Vallejos, M., & Muniello, J. (2017). Differences in social cognition between male prisoners with antisocial personality or psychotic disorder. International Journal of Psychological Research, 10(2), 16-25. https://sernoticia.com/index.php?pag=m_blog&gad=detalle_entrada&entry=1434
Cleary, S., & Luxenburg, J. (1993). Serial murderers: Common background characteristics and their contribution to causation. American Society of Criminology.
Cloninger, C. R., Sigvardsson, S., Bohman, M., & Knorring, A. L. von. (1982). Predisposition to petty criminality in Swedish adoptees: II. Cross-fostering analysis of gene-environment interaction. Archives of General Psychiatry, 39(11), 1242–1247. https://doi.org/10.1001/archpsyc.1982.04290110010002
Coccaro, E. F., McCloskey, M. S., Fitzgerald, D. A., & Phan, K. L. (2007). Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biological Psychiatry, 62(2), 168-178. https://doi.org/10.1016/j.biopsych.2006.08.024
Codina, L. (2017). No lo llame análisis bibliográfico, llámelo revisión sistematizada. Y cómo llevarla a cabo con garantías: Systematized Reviews + SALSA Framework. https://www.lluiscodina.com/revisionsistematica-salsa-framework
Cope, L. M., Ermer, E., Gaudet, L. M., Steele, V. R., Eckhardt, A. L., Arbabshirani, M., Caldwell, M., Calhoun, V. D., & Kiehl, K. A. (2014). Abnormal brain structure in youth who commit homicide. Neuroimage: Clinical, 4, 800-807. https://doi.org/10.1016/j.nicl.2014.05.002
Costello, E. J., Compton, S. N., Keeler, G., & Angold, A. (2003). Relationships between poverty and psychopathology: A natural experiment. Jama, 290(15), 2023-2029. https://doi.org/10.1001/jama.290.15.2023
Cruz, A. R., de Castro-Rodrigues, A., & Barbosa, F. (2020). Executive dysfunction, violence and aggression. Aggression and Violent Behavior, 51, 101380. https://doi.org/10.1016/j.avb.2020.101380
Cupaioli, F. A., Zucca, F. A., Caporale, C., Lesch, K. P., Passamonti, L., & Zecca, L. (2021). The neurobiology of human aggressive behavior: neuroimaging, genetic, and neurochemical aspects. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 106(2), 110059. https://doi.org/10.1016/j.pnpbp.2020.110059
Daly, M., & Wilson, M. (2003). Evolutionary psychology of lethal interpersonal violence. En International handbook of violence research (pp. 569-588). Springer. https://doi.org/10.1007/978-0-306-48039-3_29
Dambacher, F., Sack, A. T., Lobbestael, J., Arntz, A., Brugman, S., & Schuhmann, T. (2015). Out of control: Evidence for anterior insula involvement in motor impulsivity and reactive aggression. Social Cognitive and Affective Neuroscience, 10(4), 508-516. https://doi.org/10.1093/scan/nsu077
Darby, R. R., Horn, A., Cushman, F., & Fox, M. D. (2018). Lesion network localization of criminal behavior. Proceedings of the National Academy of Sciences, 115(3), 601-606. https://doi.org/10.1073/pnas.1706587115
Del Bene, V. A., Foxe, J. J., Ross, L. A., Krakowski, M. I., Czobor, P., & De Sanctis, P. (2016). Neuroanatomical abnormalities in violent individuals with and without a diagnosis of schizophrenia. Plos One, 11(12), e0168100. https://doi.org/10.1371/journal.pone.0168100
Dutton, D. G. (2002). The neurobiology of abandonment homicide. Aggression and Violent Behavior, 7(4), 407-421. https://doi.org/10.1016/S1359-1789(01)00066-0
Dutton, D. G., & Hart, S. D. (1992). Evidence for long-term, specific effects of childhood abuse and neglect on criminal behavior in men. International Journal of Offender therapy and comparative criminology, 36(2), 129-137. https://doi.org/10.1177/0306624X9203600205
Fanning, J. R., Keedy, S., Berman, M. E., Lee, R., & Coccaro, E. F. (2017). Neural correlates of aggressive behavior in real time: a review of MRI studies of laboratory reactive aggression. Current Behavioral Neuroscience Reports, 4(2), 138-150. https://doi.org/10.1007/s40473-017-0115-8
Farah, T., Ling, S., Raine, A., Yang, Y., & Schug, R. (2018). Alexithymia and reactive aggression: The role of the amygdala. Psychiatry Research: Neuroimaging, 281, 85-91. https://doi.org/10.1016/j.pscychresns.2018.09.003
Forbes, C. E., & Grafman, J. (2010). The role of the human prefrontal cortex in social cognition and moral judgment. Annual Review of Neuroscience, 33, 299-324. https://doi.org/10.1146/annurevneuro-060909-153230
Fournier, L. F. (2021). Mental health problems, traumatic brain injury, and offending behavior among persons incarcerated in a county jail (thesis doctoral). University of South Florida. https://bit.ly/3sk1rNw
Fox, J. A., & Levin, J. (2013). Overkill: Mass murder and serial killing exposed. Springer. https://bit.ly/3z4Wtrz
Gao, Y., Jiang, Y., Ming, Q., Zhang, J., Ma, R., Wu, Q., Dong, D., Guo, X., Liu, M., Wang, X., Situ, W., Pauli, R., & Yao, S. (2020) Gray Matter Changes in the Orbitofrontal-Paralimbic Cortex in Male Youths With Non-comorbid Conduct Disorder. Frontiers in Psychology. 11, 843. https://doi.org/10.3389/fpsyg.2020.00843
Goetz, A. T. (2010). The evolutionary psychology of violence. Psicothema, 22(1), 15-21. https://www.psicothema.com/pi?pii=3690
Gogolla, N. (2017). The insular cortex. Current Biology, 27(12), R580-R586. https://doi.org/10.1016/j.cub.2017.05.010
Gopal, A., Clark, E., Allgair, A., D’Amato, C., Furman, M., Gansler, D. A., & Fulwiler, C. (2013). Dorsal/ventral parcellation of the amygdala: relevance to impulsivity and aggression. Psychiatry Research: Neuroimaging, 211(1), 24-30. https://doi.org/10.1016/j.pscychresns.2012.10.010
Gorodetsky, E., Bevilacqua, L., Carli, V., Sarchiapone, M., Roy, A., Goldman, D., & Enoch, M. A. (2014). The interactive effect of MAOA‐LPR genotype and childhood physical neglect on aggressive behaviors in Italian male prisoners. Genes, Brain and Behavior, 13(6), 543-549. https://doi.org/10.1111/gbb.12140
Grafman, J., Schwab, K., Warden, D., Pridgen, A., Brown, H. R., & Salazar, A. M. (1996). Frontal lobe injuries, violence, and aggression: a report of the Vietnam Head Injury Study. Neurology, 46(5), 1231-1231. https://doi.org/10.1212/WNL.46.5.1231
Haberstick, B. C., Lessem, J. M., Hewitt, J. K., Smolen, A., Hopfer, C. J., Halpern, C. T., Halpern, T. C., Killeya-Jones, L. A., Boardman, J. D., Tabor, J., Siegler, I. C., Williams, R. B., & Harris, K. M. (2014). MAOA genotype, childhood maltreatment, and their interaction in the etiology of adult antisocial behaviors. Biological Psychiatry, 75(1), 25-30. https://doi.org/10.1016/j.biopsych.2013.03.028
Haller, J., & Haller, J. (2014). Neurobiological bases of abnormal aggression and violent behaviour. Springer. https://doi.org/10.1007/978-3-7091-1268-7.
Hiser, J., & Koenigs, M. (2018). The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biological Psychiatry, 83(8), 638-647. https://doi.org/10.1016/j.biopsych.2017.10.030
Hofhansel, L., Weidler, C., Votinov, M., Clemens, B., Raine, A., & Habel, U. (2020). Morphology of the criminal brain: gray matter reductions are linked to antisocial behavior in offenders. Brain Structure and Function, 225(7), 2017-2028. https://doi.org/10.1007/s00429-020-02106-6
Holz, N., Boecker, R., Buchmann, A. F., Blomeyer, D., Baumeister, S., Hohmann, S., Jennen-Steinmetz, C., Wolf, I., Rietschel, M., Witt, S. H., Plichta, M. M., Meyer-Lindenberg, A., Schmidt, M. H., Esser, G., Banaschewski, T., Brandeis, D., & Laucht, M. (2016). Evidence for a sex-dependent MAOA× childhood stress interaction in the neural circuitry of aggression. Cerebral Cortex, 26(3), 904-914. https://doi.org/10.1093/cercor/bhu249
Howner, K., Eskildsen, S. F., Fischer, H., Dierks, T., Wahlund, L. O., Jonsson, T., Wiberg, M. K., & Kristiansson, M. (2012). Thinner cortex in the frontal lobes in mentally disordered offenders. Psychiatry Research: Neuroimaging, 203(2-3), 126-131. https://doi.org/10.1016/j.pscychresns.2011.12.011
Janes, S., O’Rourke, S., & Schwannauer, M. (2021). Assessing the cognitive contributors to violence. Social Science Protocols, 4, 1-16. https://doi.org/10.7565/ssp.v4.5213
Jensen, K. P., Covault, J., Conner, T. S., Tennen, H., Kranzler, H. R., & Furneaux, H. M. (2009). A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviors. Molecular Psychiatry, 14(4), 381-389. https://doi.org/10.1038/mp.2008.15
Kiernan, J. A. (2012). Anatomy of the temporal lobe. Epilepsy Research and Treatment, 176157. https://doi.org/10.1155/2012/176157
Krämer, U. M., Jansma, H., Tempelmann, C., & Münte, T. F. (2007). Tit-for-tat: the neural basis of reactive aggression. Neuroimage, 38(1), 203-211. https://doi.org/10.1016/j.neuroimage.2007.07.029
McEllistrem, J. E. (2004). Affective and predatory violence: A bimodal classification system of human aggression and violence. Aggression and Violent Behavior, 10(1), 1-30. https://doi.org/10.1016/j.avb.2003.06.002
McSwiggan, S., Elger, B., & Appelbaum, P. S. (2017). The forensic use of behavioral genetics in criminal proceedings: Case of the MAOA-L genotype. International Journal of Law and Psychiatry, 50, 17-23. https://doi.org/10.1016/j.ijlp.2016.09.005
Nielsen, D. A., Jenkins, G. L., Stefanisko, K. M., Jefferson, K. K., & Goldman, D. (1997). Sequence, splice site and population frequency distribution analyses of the polymorphic human tryptophan hydroxylase intron 7. Molecular Brain Research, 45(1), 145-148. https://doi.org/10.1016/S0169-328X(96)00304-X
Nieuwenhuys, R., Voogd, J., & Huijzen C. van. (2009). El sistema nervioso central humano. Editorial Médica Panamericana.
Nkoana, W., Williams, H., Steenkamp, N., Clasby, B., Knowler, H., & Schrieff, L. (2020). Understanding the educational needs of young offenders: A prevalence study of traumatic brain injury and learning disabilities. International Journal of Educational Development, 78, 102261. https://doi.org/10.1016/j.ijedudev.2020.102261
Nobile, M., Giorda, R., Marino, C., Carlet, O., Pastore, V., Vanzin, L., Bellina, M., Molteni, M., & Battaglia, M. (2007). Socioeconomic status mediates the genetic contribution of the dopamine receptor D4 and serotonin transporter linked promoter region repeat polymorphisms to externalization in preadolescence. Development and Psychopathology, 19(4), 1147-1160. https://doi.org/10.1017/S0954579407000594
Pardini, D. A., Raine, A., Erickson, K., & Loeber, R. (2014). Lower amygdala volume in men is associated with childhood aggression, early psychopathic traits, and future violence. Biological Psychiatry, 75(1), 73-80. https://doi.org/10.1016/j.biopsych.2013.04.003
Pezawas, L., Meyer-Lindenberg, A., Drabant, E. M., Verchinski, B. A., Munoz, K. E., Kolachana, B. S., Egan, M. F., Mattay, V. S., Haririm, A. R., & Weinberger, D. R. (2005). 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nature Neuroscience, 8(6), 828-834. https://doi.org/10.1038/nn1463
Redondo Illescas, S., & Pueyo, A. A. (2007). La psicología de la delincuencia. Papeles del Psicólogo, 28(3), 147-156. https://pesquisa.bvsalud.org/portal/resource/pt/ibc-64139
Reid, S., Katan, A., Ellithy, A., Della Stua, R., & Denisov, E. V. (2019). The perfect storm: Mapping the life course trajectories of serial killers. International Journal of Offender Therapy and Comparative Criminology, 63(9), 1621-1662. https://doi.org/10.1177/0306624X19838683
Rodríguez, C., Lorenzo, O., & Herrera, L. (2005). Teoría y práctica del análisis de datos cualitativos. Proceso general y criterios de calidad. Revista Internacional de Ciencias Sociales y Humanidades, 15(2). 133-154. http://biblioteca.udgvirtual.udg.mx/jspui/handle/123456789/1038
Sandoval-Obando, E. (2020). Caracterización del trastorno por videojuegos: ¿una problemática emergente? Pensamiento Psicológico, 18(1), 87-102. https://doi.org/10.11144/javerianacali.ppsi18-1.ctvp
Sano, K., Mayanagi, Y., Sekino, H., Ogashiwa, M., & Ishijima, B. (1970). Results of stimulation and destruction of the posterior hypothalamus in man. Journal of Neurosurgery, 33(6), 68-707. https://doi.org/10.3171/jns.1970.33.6.0689
Schiffer, B., Müller, B. W., Scherbaum, N., Hodgins, S., Forsting, M., Wiltfang, J., Gisewsky, E., & Leygraf, N. (2011). Disentangling structural brain alterations associated with violent behavior from those associated with substance use disorders. Archives of General Psychiatry, 68(10), 1039-1049. https://doi.org/10.1001/archgenpsychiatry.2011.61
Schwarzbold, M., Diaz, A., Martins, E. T., Rufino, A., Amante, L. N., Thais, M. E., Quevedo, J., Hohl, A., Linhares, M. N., & Walz, R. (2008). Psychiatric disorders and traumatic brain injury. Neuropsychiatric Disease and Treatment. 4(4), 797–816. https://doi.org/10.2147/ndt.s2653
Seidenwurm, D., Pounds, T. R., Globus, A., & Valk, P. E. (1997). Abnormal temporal lobe metabolism in violent subjects: correlation of imaging and neuropsychiatric findings. American Journal of Neuroradiology, 18(4), 625-631. http://www.ajnr.org/content/18/4/625.short
Söderström, A. H. (2005). Clinical neuropsychiatric symptoms in perpetrators of severe crimes against persons. Nordic Journal of Psychiatry, 59(4), 246-252. https://doi.org/10.1080/08039480500213709
Stone, M. H. (1989). Murder. Psychiatric Clinics of North America, 12(3), 643-651. https://doi.org/10.1016/S0193-953X(18)30419-2
Tateno, A., Jorge, R. E., & Robinson, RG. (2003) Clinical correlates of aggressive behavior after traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 15(2), 155-160. https://neuro.psychiatryonline.org/doi/full/10.1176/jnp.15.2.155
Tielbeek, J. J., Johansson, A., Polderman, T. J., Rautiainen, M. R., Jansen, P., Taylor, M., Tong, X., Lu, Q., Burt, A. S., Tiemeier, H., Viding, E., Plomin, R., Martin, N. G., Heath, A. C., Madden, P. A. F., Montgomery, G., Beaver, K. M., Waldman, I., Gelernter, J., & Posthuma, D. (2017). Genome-wide association studies of a broad spectrum of antisocial behavior. Jama Psychiatry, 74(12), 1242-1250. https://doi.org/10.1001/jamapsychiatry.2017.3069
Tomàs, M., Feixas, M., Bernabeu-Tamayo, M., & Ruiz, J. (2015). La literatura científica sobre rankings universitarios: una revisión sistemática. REDU-Revista de Docencia Universitaria, 13(3), 33-54. http://hdl.handle.net/11162/114922
Tuvblad, C., Narusyte, J., Grann, M., Sarnecki, J., & Lichtenstein, P. (2011). The genetic and environmental etiology of antisocial behavior from childhood to emerging adulthood. Behavior Genetics, 41(5), 629-640. https://doi.org/10.1007/s10519-011-9463-4
Valzelli, L. (1983). Psicobiología de la agresión y la violencia. 1a ed. española. Madrid: Alhambra, (pp. 167-240). Print.
Van der Gronde, T., Kempes, M., El, C. van, Rinne, T., & Pieters, T. (2014) Neurobiological correlates in forensic assessment: A systematic review. Plos One, 9(10), e110672. https://doi.org/10.1371/journal.pone.0110672
Van Heukelum, S., Tulva, K., Geers, F. E., Dulm, S. van, Ruisch, I. H., Mill, J., Viana, J. F., Beckmann, C. F., Buitelaar, J. K., Poelmans, G., Glennon, J C., Vogt, B. A., Martha N. Havenith., & França, A. S. (2021). A central role for anterior cingulate cortex in the control of pathological aggression. Current Biology, 31(11), 2321-2333. https://doi.org/10.1016/j.cub.2021.03.062
Vargas Hernández, B. A. (2021). ¿Por qué se producen altos niveles de homicidio doloso en las alcaldías de la Ciudad de México? Una aproximación configuracional desde la teoría de la desorganización social. Sociológica (México), 36(102), 187-226. http://www.sociologicamexico.azc.uam.mx/index.php/Sociologica/article/view/1674
Walsh, A., & Bolen, J. D. (2016). The neurobiology of criminal behavior: Gene-brain-culture interaction. Routledge. https://doi.org/10.4324/9781315555270
Woermann, F. G., Elst, L. T. van, Koepp, M. J., Free, S. L., Thompson, P. J., Trimble, M. R., & Duncan, J. S. (2000). Reduction of frontal neocortical grey matter associated with affective aggression in patients with temporal lobe epilepsy: an objective voxel by voxel analysis of automatically segmented MRI. Journal of Neurology, Neurosurgery & Psychiatry, 68(2), 162-169. https://doi.org/10.1136/jnnp.68.2.162
Xia, X., Li, Y., Wang, Y., Xia, J., Lin, Y., Zhang, X., Liu, Y., & Zhang, J. (2021). Functional role of dorsolateral prefrontal cortex in the modulation of cognitive bias. Psychophysiology, 58 e13894. https://doi.org/10.1111/psyp.13894
Yang, Y., & Raine, A. (2009). Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a metaanalysis. Psychiatry Research: Neuroimaging 174(2), 81-88. https://doi.org/10.1016/j.pscychresns.2009.03.012
Yang, Y., Raine, A., Han, C. B., Schug, R. A., Toga, A. W., & Narr, K. L. (2010). Reduced hippocampal and parahippocampal volumes in murderers with schizophrenia. Psychiatry Research: Neuroimaging, 182(1), 9-13. https://doi.org/10.1016/j.pscychresns.2009.10.013
Yu, Q., Teixeira, C. M., Mahadevia, D., Huang, Y., Balsam, D., Mann, J. J., Gingrich, J. A., & Ansorge, M. S. (2014). Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice. Molecular Psychiatry, 19(6), 688-698. https://www.nature.com/articles/mp201410
Zaboli, G., Jönsson, E. G., Gizatullin, R., Åsberg, M., & Leopardi, R. (2006). Tryptophan hydroxylase-1 gene variants associated with schizophrenia. Biological Psychiatry, 60(6), 563-569. https://doi.org/10.1016/j.biopsych.2006.03.033
Zahn, R., Moll, J., Krueger, F., Huey, E. D., Garrido, G., & Grafman, J. (2007). Social concepts are represented in the superior anterior temporal cortex. Proceedings of the National Academy of Sciences, 104(15), 6430-6435. https://doi.org/10.1073/pnas.0607061104
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Revista Criminalidad
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Licencia creative commons CC BY NC ND https://creativecommons.org/licenses/by-nc-nd/2.0/