Análisis de los hurtos en Colombia durante el año 2017 mediante los modelos de regresión lineal múltiple y la regresión ponderada geográficamente
DOI:
https://doi.org/10.47741/17943108.66Palabras clave:
factores de la criminalidad, hurto, estadísticas criminales, medición de la criminalidad, estadística, GWR, OLSResumen
Según información procedente del observatorio del delito de la Policía Nacional de Colombia, los hurtos a personas y de celulares han presentado una tendencia al alza desde el año 2003 (Norza, Peñalosa y Rodríguez, 2017). Esta tendencia motivó la realización del presente estudio para analizar la relación entre los factores socioeconómicos y el hurto en los diferentes municipios de Colombia durante el año 2017, mediante el uso de modelos de regresión lineal múltiple y regresión geográficamente ponderada utilizando fuentes de información secundaria segregada a nivel municipal. Se constató que las variables matriculados en instituciones de educación superior por cada mil personas, presupuesto percápita asignado por el sistema general de participaciones y la categoría del municipio explican el 69,5% de la variabilidad del logaritmo del hurto a personas y de celulares en 532 municipios mediante un modelo de regresión lineal múltiple estimado globalmente y el 50,16% utilizando el modelo de regresión ponderada geográficamente omitiendo en este último la categoría del municipio. En este modelo hubo ligeras variaciones en los coeficientes a nivel municipal, lo que refleja que la heterogeneidad social y económica tiene efectos en los indicadores de hurto a nivel nacional.
Descargas
Citas
Baron, S. W. (2003). Self-Control, Social Consequences, and Criminal Behavior: Street Youth and the General Theory of Crime. Journal of Research in Crime and Delinquency, 40(4): 403-425. https://doi.org/10.1177/0022427803256071.
Breusch, T. S. & Pagan, A. R. (1979). A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econometrica, 47(5): 1287. https://doi.org/10.2307/1911963.
Brunsdon, C., Fotheringham, A. S. & Charlton, M. (1996). Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geographical Analysis, 28(4), 281-298. https://doi.org/10.1111/j.1538-4632.1996.tb00936.x.
Brunsdon, C., Fotheringham, A. S. & Charlton, M. (1998). Geographically Weighted Regression. Journal of the Royal Statistical Society: Series D (The Statistician), 47(3): 431-443. https://doi.org/10.1111/1467-9884.00145.
Brunsdon, C., Fotheringham, A. S. & Charlton, M. (1999). Some Notes on Parametric Significance Tests for Geographically Weighted Regression. Journal of Regional Science, 39(3): 497-524. https://doi.org/10.1111/0022-4146.00146.
Castillo G, L. C. (2007). Etnicidad y nación: El desafío de la diversidad en Colombia (1. ed.). Colección Libros de investigación. Cali Colombia: Programa Editorial Universidad del Valle. Recuperado de https://books.google.es/books?id=HyYPkuRP89IC
Cahill, M. & Mulligan, G. (2007). Using Geographically Weighted Regression to Explore Local Crime Patterns. Social Science Computer Review, 25(2), 174-193. https://doi.org/10.1177/0894439307298925.
Charlton, M. & Fotheringham, A. S. (2009). Geographically weighted regression (White Paper). Recuperado de https://www.geos.ed.ac.uk/~gisteac/fspat/gwr/gwr_arcgis/GWR_WhitePaper.pdf.
Charlton, M., Fotheringham, A. S. & Brunsdon, C. (2006). Geographically weighted regression: NCRM Methods Review Papers/NCRM/006. Recuperado de http://eprints.ncrm.ac.uk/90/.
Chávez, S. M. (2018). Causas y factores que conllevan a cometer el delito de feminicidio en la provincia de Huánuco 2016-2017. Universidad de Huánuco, Huánuco - Perú.
Chen, X., Thrane, L., Whitbeck, L. B., Johnson, K. D. & Hoyt, D. R. (2007). Onset of conduct disorder, use of delinquent subsistence strategies, and street victimization among homeless and runaway adolescents in the Midwest. Journal of interpersonal violence, 22(9): 1156-1183. https://doi.org/10.1177/0886260507303731.
Dankhe, G. L. (1986). Investigación y comunicación. En C. Fernández-Collado y G. L. Dankhe (Eds.), La comunicación humana: ciencia social (pp. 385-454). México: McGraw-Hill.
Dong, G., Nakaya, T. & Brunsdon, C. (2018). Geographically weighted regression models for ordinal categorical response variables: An application to geo-referenced life satisfaction data. Computers, Environment and Urban Systems, 70, 35-42. https://doi.org/10.1016/j.compenvurbsys.2018.01.012.
Durbin, J. & Watson, G. S. (1950). Testing for Serial Correlation in Least Squares Regression: I . Biometrika, 37(3/4): 409. https://doi.org/10.2307/2332391.
Durbin, J. & Watson, G. S. (1951). Testing for Serial Correlation in Least Squares Regression. II. Biometrika, 38(1/2): 159. https://doi.org/10.2307/2332325.
Durbin, J. & Watson, G. S. (1971). Testing for Serial Correlation in Least Squares Regression. III. Biometrika, 58(1): 1. https://doi.org/10.2307/2334313.
Eisner, M. (2002). Crime, Problem Drinking, and Drug Use: Patterns of Problem Behavior in Cross-National Perspective. The ANNALS of the American Academy of Political and Social Science, 580(1): 201-225. https://doi.org/10.1177/000271620258000109.
Environmental Systems Research Institute (2016). Regresión ponderada geográficamente (GWR)-Ayuda. Recuperado de http://desktop.arcgis.com/es/arcmap/10.3/tools/spatial-statistics-toolbox/geographically-weighted-regression.htm.
Estrada, L. & Durán, C. (2015). Estudio sobre las relaciones espaciales locales entre la pobreza multidimensional, la ruralidad y la capacidad institucional. Recuperado de https://www.researchgate.net/publication/317721631_Estudio_sobre_las_relaciones_espaciales_locales_entre_la_pobreza_multidimensional_la_ruralidad_y_la_capacidad_institucional.
Fajnzylber, P., Lederman, D. & Loayza, N. (2002). Inequality and violent crime. The journal of Law and Economics, 45(1): 1-39.
https://doi.org/10.1086/338347
Fotheringham, A. S., Charlton, M. & Brunsdon, C. (1998). Geographically Weighted Regression: A Natural Evolution of the Expansion Method for Spatial Data Analysis. Environment and Planning A, 30(11), 1905-1927. https://doi.org/10.1068/a301905.
Fotheringham, A. S., Charlton, M. & Brunsdon, C. (2001). Spatial Variations in School Performance: A Local Analysis Using Geographically Weighted Regression. Geographical and Environmental Modelling, 5(1): 43-66. https://doi.org/10.1080/13615930120032617.
Fowler, B. (2013). Understanding Colombian Violence Through Geographic Information Systems and Statistical Approaches (Master Thesis). Western Kentucky University, Bowling Green, Kentucky.
Gottfredson, M. R. & Hirschi, T. (1990). A general theory of crime. Stanford Calif.: Stanford University Press.
Gutiérrez-Puebla, J., García-Palomares, J. C. & Daniel-Cardozo, O. (2012). Regresión Geográficamente Ponderada (GWR) y estimación de la demanda de las estaciones del Metro de Madrid. En XV Congreso Nacional de Tecnologías de la Información Geográfica.Madrid.
Harrison, L. D. (1992). The Drug-Crime Nexus in the USA. Contemporary Drug Problems, 19, 203.
Mancero, X. & Feres, J. C. (2001). El método de las necesidades básicas insatisfechas (NBI) y sus aplicaciones en América Latina. Serie estudios estadísticos y perspectivas: Vol. 7. Santiago: Naciones Unidas, CEPAL. Recuperado de http://hdl.handle.net/11362/4784.
Moran, P. A. P. (1950). Notes on Continuous Stochastic Phenomena. Biometrika, 37(1/2): 17-23. https://doi.org/10.2307/2332142.
Nakaya, T. (2016). GWR4.09 User Manual: GWR4 Windows Application for Geographically Weighted Regression Modelling. Recuperado de https://raw.githubusercontent.com/gwrtools/gwr4/master/GWR4manual_409.pdf.
Norza, E., Peñalosa, M. J. & Rodríguez, J. D. (2017). Exégesis de los registros de criminalidad y actividad operativa de la Policía Nacional en Colombia, año 2016. Revista Criminalidad, 59(3): 9-40.
Öcal, N. & Yildirim, J. (2010). Regional effects of terrorism on economic growth in Turkey: A geographically weighted regression approach. Journal of Peace Research, 47(4): 477-489. https://doi.org/10.1177/0022343310364576
Ortiz-Yusty, C. E., Páez, V. & Zapata, F. A. (2013). Temperature and precipitation as predictors of species richness in northern Andean amphibians from Colombia. Caldasia, 35(1), 65-80.
R Core Team. (2018). Vienna, Austria: R Foundation for Statistical Computing. Recuperado de https://www.R-project.org/.
Ramírez, K. V., López, Y., Castro, J. & Ocampo, J. F. (2017). Factores geográficos que influyeron en la concentración del hurto de motocicletas en diez estaciones policiales del Valle del Cauca, entre el 2010 y el 2015. Revista Criminalidad, 59(2): 9-31.
Rincón-Ruiz, A., Pascual, U. y Flantua, S. (2013). Examining spatially varying relationships between coca crops and associated factors in Colombia, using geographically weight regression. Applied Geography, 37, 23-33. https://doi.org/10.1016/j.apgeog.2012.10.009
Sandoval, L. E. & Barón, D. M. (2008). Una revisión al estudio de la delincuencia y criminalidad. Revista Facultad de Ciencias Económicas: Investigación y Reflexión, 16(1): 105-117. Recuperado de https://dialnet.unirioja.es/descarga/articulo/4237385.pdf.
Shapiro, S. S. & Wilk, M. B. (1965). An Analysis of Variance Test for Normality (Complete Samples). Biometrika, 52(3/4): 591. https://doi.org/10.2307/2333709.
Tobler, W. R. (1970). A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, 46(sup1): 234-240.
https://doi.org/10.2307/143141
Wheeler, D. & Tiefelsdorf, M. (2005). Multicollinearity and correlation among local regression coefficients in geographically weighted regression. Journal of Geographical Systems, 7(2), 161-187. https://doi.org/10.1007/s10109-005-0155-6.
Zhao, J., Wang, W. & Cheng, Q. (2014). Application of geographically weighted regression to identify spatially non-stationary relationships between Fe mineralization and its controlling factors in eastern Tianshan, China. Ore Geology Reviews, 57, 628-638. https://doi.org/10.1016/j.oregeorev.2013.08.005.