Exploration of sexual violence in the city of Bogota: application of a data mining technique
DOI:
https://doi.org/10.47741/17943108.270Keywords:
sexual offenses, quantitative data, victim, family, social controlAbstract
This study offers an approach to sexual violence by using secondary source data and applying some data mining techniques. The data source used is the 'Instituto Nacional de Medicina Legal y Ciencias Forenses' (National Institute of Legal Medicine and Forensic Sciences), and the algorithms applied are Selection by Characteristics, C5.0, and K-Means.
Prior to applying these techniques, a theoretical approximation to sexual violence is made in order to appreciate how this kind of violence has been approached and analyzed. Subsequently, data quality is assessed and some improvement treatments are applied. Upon having reached a proper dataset for processing and analysis, data mining techniques are applied, and the relationship of the alleged aggressor to the victim is established as a variable objective or answer.
The issues or solutions offered by the above data processing lead to an analysis which establishes as a core the levels of proximity with the victim, and questions those studies based on the traditional kinship structure, while it simultaneously validates the distinction that establishes a sexual violence rating between abuse and assault. Analyses of the data mining exercise facilitate a clear statement of the configuration of two clusters that can be pointed at with said classification. They are accompanied by a third one that, although not well defined yet, begins to appear. The three clusters have been designated as sexual violence in an incest situation, sexual violence in an anonymity situation, and sexual violence in a family structure situation. Finally, some suggestions are given in seeking to improve data quality, while the opportunities this type of analysis opens at attempting to give an answer to conflictivity, violence and crime are outlined.
Downloads
References
Centro de Estudio y Análisis en Convivencia y Seguridad Ciudadana (2008). Violencia intrafamiliar y abuso sexual. No publicado.
Centro Internacional para la Prevención de la Criminalidad (2008). Informe internacional Prevención de la criminalidad y seguridad cotidiana: tendencias y perspectivas. Centro Internacional para la Prevención de la Criminalidad. Canadá: CIPC.
Cheeseman, P. & Stutz, J. Bayesian classification (AutoClass): Theory and results. En: Fayyad, U., Piatetsky-Shapiro, G. & Smyth, P. (1996). Advances in Knowledge Discovery and Data Mining (pp. 153-180). U.S.A.: American Association for Artificial Intelligence Menlo Park.
Chen, M. S., Han, J. & Yu, P. (1996). Data mining: An overview from database perspective. IEEE Transactions on Knowledge and Data Engineering, 8 (6): 866-883.
Chen, H., Chung, W., Xu, J., Wang, G., Qin, Y., & Chau, M. (2004). Crime Data Mining: A General Framework and Some Examples. IEEE Computer Society, 37 (4): 50-56.
Congreso de Colombia (2000). Ley 599 de 2000. Código Penal. Artículos 138-141; 205-210 [versión electrónica]. Recuperado el 19 de diciembre del 2011 de: http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=6388.
Coleman, J. (1990). Foundations of Social Theory. Cambridge, Mass.: Harvard University Press.
Dammert, L., Salazar, F., Montt, C. & González, P. A. (2010). Crimen e inseguridad: indicadores para las Américas. Santiago, Chile: Flacso-Chile/Banco Interamericano de Desarrollo.
Ester, M., Kriegel, H. P. & Xu, X. (1995). Knowledge discovery in large spatial databases: Focusing techniques for efficient class identification. En: Proc. 4th Int. Symp. on Large Spatial Databases (SSD'95) (pp. 67-82). Portland, Maine, EE. UU.
Fisher, D. (1996). Iterative optimization and simplification of hierarchical clusterings. Departament of Computer Science. EE. UU.: Vanderbilt University, Nashville.
Han, J. & Kamber, M. (2001). Data mining: Concepts and techniques. United States of America: Morgan Kauffmann Publishers.
González, J. (2007). Informes periciales por presunto delito sexual. Forensis. Datos para la vida, pp. 143-178.
Jain, A. & Dubes, R. (1988). Algorithms for Clustering Data. USA: Prentice Hall.
Kantardzic, M. (2002). Data Mining: Concepts, models, methods and algorithms. IEEE Press & John Wiley.
Kaufman, L. & Rousseeuw, P. J. (1990). Finding Groups in Data: an Introduction to Cluster Analysis. New York: Wiley-Interscience.
Ng, R. T. & Han, J. (1994). Efficient and effective clustering method for spatial data mining. En: Proc. Int. Conf. Very Large Data Bases, pp. 144/155. Santiago de Chile, Chile.
Ochoa, M. A. (2004). Herramientas inteligentes para la explotación de información. Trabajo final: Especialidad en Ingeniería en Sistemas Expertos, Instituto Tecnológico de Buenos Aires (ITBA).
Organización Panamericana de la Salud (2003). Informe mundial sobre la violencia y la salud. Washington, D.C.: Oficina Regional para las Américas de la Organización Mundial de la Salud.
Pinzón, D. (2009). La violencia de género y la violencia sexual en el conflicto armado colombiano: indagando sobre sus manifestaciones. En: J. Restrepo & D. Aponte (Eds.). Guerra y violencias en Colombia. Bogotá: Pontifica Universidad Javeriana.
Sozzo, M. (2000). Pintando a través de números: fuentes estadísticas de conocimiento y gobierno democrático de la cuestión criminal en Argentina. Recuperado en septiembre del 2009 de: http://www.ilsed.org/index.php?option=com_docman&task=doc_view&gid=159&itemid=44.
Sozzo, M. (Director) (2005). Policía, violencia, democracia: ensayos sociológicos. 1a ed. Santa Fe: Universidad Nacional del Litoral.
Tan, P. N., Steinbach, M. & Kumar, V. (2005). Introduction to Data Mining. USA: Addison-Wesley.
Zeleznikow, J. (2005). Using Data Mining to Detect Criminal Networks. Recuperado en septiembre del 2009 de: http://www.aic.gov.au/conferences/occasional/2005-04.zeleznikow.html.
Zhang, T., Ramakrishnan, R. & Livny, M. (1996). BIRCH: an efficient data clustering method for very large databases. En Proc. ACM-SIGMOD Int. Conf. Management of Data. Montreal, Canadá.
Downloads
Published
How to Cite
Issue
Section
License
Licencia creative commons CC BY NC ND https://creativecommons.org/licenses/by-nc-nd/2.0/