Aplicación del análisis de isótopos de estroncio en la identificación humana en Colombia

Autores/as

  • Diego Chavarro Universidad del Magdalena Santa Marta, Colombia
  • Daniel Castellanos Universidad del Magdalena Santa Marta, Colombia
  • Edixon Quiñones Universidad del Magdalena Santa Marta, Colombia

DOI:

https://doi.org/10.47741/17943108.339

Palabras clave:

Identificación de víctima, Isótopos, estroncio (Sr), identificación humana, geología colombiana, estroncio biodisponible, revisión

Resumen

El artículo presenta una revisión de las investigaciones realizadas a la fecha en Colombia relacionadas con la aplicación de los análisis de isótopos en la identificación humana. En especial, hace énfasis en la utilidad de las relaciones isotópicas de estroncio (87Sr/86Sr) para rastrear el lugar de origen de un cuerpo en condición no identificada (CNI). Dentro de la revisión se resalta la importancia de la variabilidad geológica colombiana, la cual puede incidir en la diversidad del estroncio biodisponible, en un espacio y un periodo determinados. Esta diversidad del estroncio biodisponible puede verse  reflejada en la distribución espacial de la composición isotópica de estroncio en diferentes tejidos humanos (dientes, huesos, cabello y uñas) de los pobladores del territorio colombiano. Esto es debido a la transferencia de la señal isotópica del estroncio biodisponible a los tejidos humanos. Dentro de las conclusiones de la revisión bibliográfica realizada se menciona la importancia del uso del estroncio (Sr) en la identificación humana en el contexto colombiano, su aplicación forense y sus posibles limitantes respecto al uso de esta metodología en el país. 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ammer, S., Bartelink, E., Vollner, J., Anderson, B. y Cunha, E. (2020a). Spatial distributions of oxygen stable isotope ratios in tap water from Mexico for region of origin predictions of unidentified border crossers. Journal of forensic sciences, 65(4), 1049-1055. https://doi.org/10.1111/1556-4029.14283

Ammer, S., Kootker, L., Bartelink, E., Anderson, B., Cunha, E. y Davies, G. (2020b). Comparison of strontium isotope ratios in Mexican human hair and tap water as provenance indicators. Forensic Science International, 314, 110422. https://doi.org/10.1016/j.forsciint.2020.110422

Baraybar, J. (2008). When DNA is not available, can we still identify people? Recommendations for best practice. Journal of Forensic Sciences, 53(3), 533-540. https://doi.org/10.1111/j.1556-4029.2008.00709.x

Bartelink, E. (2018). Identifying difference: Forensic methods and the uneven playing field of repatriation. In Sociopolitics of migrant death and repatriation (pp. 129-141). Springer, Cham.

Bartelink, E. y Chesson, L. (2019). Recent applications of isotope analysis to forensic anthropology. Forensic sciences research, 4(1), 29-44. https://doi.org/10.1080/20961790.2018.1549527

Bartelink, E., Berg, G., Beasley, M. y Chesson, L. (2014). Application of stable isotope forensics for predicting region of origin of human remains from past wars and conflicts. Annals of Anthropological Practice, 38(1), 124-136. https://doi.org/10.1111/napa.12047

Bartelink, E., Berg, G., Chesson, L., Tipple, B., Beasley, M., Prince-Buitenhuys, J. y Latham, K. (2018). Applications of stable isotope forensics for geolocating unidentified human remains from past conflict situations and large-scale humanitarian efforts. In New perspectives in forensic human skeletal identification (pp. 175-184). Academic Press. https://doi.org/10.1016/B978-0-12-805429-1.00015-6

Bartelink, E., Chesson, L., Tipple, B., Hall, S. y Kramer, R. (2020). Multi‐isotope approaches for region‐of‐origin predictions of undocumented border crossers from the US–Mexico border: Biocultural perspectives on diet and travel history. Forensic Science and Humanitarian Action: Interacting with the Dead and the Living, 369-384.

Bartelink, E., Mackinnon, A., Prince-Buitenhuys, J., Tipple, B. y Chesson, L. (2016). Stable isotope forensics as an investigative tool in missing persons investigations. In Handbook of missing persons (pp. 443-462). Springer, Cham.

Bataille, C., Crowley, B., Wooller, M. y Bowen, G. (2020). Advances in global bioavailable strontium isoscapes. Palaeogeography, Palaeoclimatology, Palaeoecology, 555, 109849. https://doi.org/10.1016/j.palaeo.2020.109849

Bentley, R. (2006) Strontium isotopes from the earth to the archaeological skeleton: a review. Journal of Archaeological Method and Theory, 13 (3), 135–187. https://doi.org/10.1007/s10816-006-9009-x

Bell, P. (2012). Colombia: manual comercial e industrial. Banco de la República de Colombia, capítulo 1 Geografía Topografía y Clima pp 37-50. https://www.banrep.gov.co/es/node/25509

Bowen, G., Ehleringer, J., Chesson, L., Stange, E. y Cerling, T. (2007). Stable isotope ratios of tap water in the contiguous United States. Water Resources Research, 43(3). https://doi.org/10.1029/2006WR005186

Burns, K. (2007) Forensic anthropology Training Manual New Jersey: United States: Prentice Hall Publishing.

Burton, J. (2017) Strontium isotopes, pp. 916–919, in: Gilbert, A. S., Goldberg, P., Holliday, V. T., Mandel, R. D., & Sternberg, R. S. (Eds.). (2017). Encyclopedia of geoarchaeology. Springer Netherlands.

Bürgl, H. (1961). Historia geológica de Colombia. Ed. Voluntad. https://www.accefyn.com/revista/Volumen_11/43/137-191.pdf

Bruckner, J. y Reyes, S. (2005). Métodos científicos de identificación de cadáveres (Tesis de Pregrado, Pontificia Universidad Javeriana). https://repository.javeriana.edu.co/

Capo, R., Stewart, B. y Chadwick, O. (1998). Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma 82, 197-225.

Castellanos, D., DiGangi, E. y Bethard, J. (2020). Applicability of stable isotope analysis to the Colombian human identification crisis. Forensic Science and Humanitarian Action: Interacting with the Dead and the Living, 411-424. https://doi.org/10.1002/9781119482062.ch26

Chesson, L., Meier‐Augenstein, W., Berg, G., Bataille, C., Bartelink, E. y Richards, M. (2020). Basic principles of stable isotope analysis in humanitarian forensic science. Forensic Science and Humanitarian Action: Interacting with the Dead and the Living, 285-310. https://doi.org/10.1002/9781119482062.ch20

Chesson, L., Tipple, B., Ehleringer, J., Park, T. y Bartelink, E. (2018). Forensic applications of isotope landscapes (“isoscapes”): A tool for predicting region-of-origin in forensic anthropology cases. In: Boyd Jr., C. C., and D.C. Boyd (eds), Forensic Anthropology: Theoretical Framework and Scientific Basis. John Wiley & Sons, pp. 127-148. https://doi.org/10.1002/9781119226529.ch8

Chesson, L., Tipple, B., Howa, J., Bowen, G., Barnette, J., Cerling, T. y Ehleringer, J. (2014). Stable isotopes in forensics applications. In: Cerling, T.E. (Ed.), Treatise on Geochemistry, second ed. Elsevier, New York, pp. 285–317.

Christensen, A.M. (2005). Testing the Reliability of Frontal Sinuses in Positive Identification. J Forensic Sci, Vol. 50, No1, pp. 1-5.

Christensen, A., Passalacqua, N. y Bartelink, E. (2019). Forensic anthropology: current methods and practice. Academic Press.

D’alonzo, S., Guyomarc’h P, Byrd J.E. y Stephan C.N. (2017). A Large-Sample Test of a Semi-Automated Clavicle Search Engine to Assist Skeletal Identification by Radiograph Comparison. J Forensic Sci, Vol. 62, No1, pp. 181-185. https://doi.org/10.1111/1556-4029.13221

De Luca, S. (2011). Identificación humana en antropología forense: aportaciones para la estimación de sexo y edad (Tesis Doctoral, Universidad de Granada). https://digibug.ugr.es/

DeNiro, M. y Epstein, S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45, 341–351. https://doi.org/10.1016/0016-7037(81)90244-1

Degryse, P., De Muynck, D., Delporte, S., Boyen, S., Jadoul, L., De Winne, J. y Vanhaecke, F. (2012). Strontium isotopic analysis as an experimental auxiliary technique in forensic identification of human remains. Analytical Methods, 4(9), 2674-2679. DOI:10.1039/C2AY25035G

Eck, C., DiGangi, E. y Bethard, J. (2019). Assessing the efficacy of isotopic provenancing of human remains in Colombia. Forensic science international, 302, 109919. https://doi.org/10.1016/j.forsciint.2019.109919

Eckardt, H., Chenery, C., Booth, P., Evans, J. A., Lamb, A. y Müldner, G. (2009). Oxygen and strontium isotope evidence for mobility in Roman Winchester. Journal of Archaeological Science, 36(12), 2816-2825. https://doi.org/10.1016/j.jas.2009.09.010

Edmond, J. (1992). Himalayan tectonics, weathering processes, and the strontium isotopic record in marine limestones. Science 258, 1594-1597. DOI: 10.1126/science.258.5088.1594

Eerkens, J., Barfod, G., Jorgenson, G. y Peske, C. (2014). Tracing the mobility of individuals using stable isotope signatures in biological tissues: “locals” and “non-locals” in an ancient case of violent death from Central California. Journal of Archaeological Science, 41, 474-481. https://doi.org/10.1016/j.jas.2013.09.014

Ehleringer, J., Avalos, S., Tipple, B., Valenzuela, L. y Cerling, T. (2020). Stable isotopes in hair reveal dietary protein sources with links to socioeconomic status and health. Proceedings of the National Academy of Sciences, 117(33), 20044-20051. https://doi.org/10.1073/pnas.1914087117

Ehleringer, J., Thompson, A., Podlesak, D., Bowen, G., Chesson, L., Cerling, T. y Schwarcz, H. (2010). A framework for the incorporation of isotopes and isoscapes in geospatial forensic investigations. In Isoscapes (pp. 357-387). Springer, Dordrecht.

Faure, G. (1986). Principles of isotope geology. 2nd rev. ed. Wiley, New York.

Faure, G. y Powell, J. L. (1972). Strontium isotope geology (5). Berlin: Springer-Verlag.

Font, L., Van Der Peijl, G., Van Leuwen, C., Van Wetten, I. y Davies, G. R. (2015). Identification of the geographical place of origin of an unidentified individual by multi-isotope analysis. Science & Justice, 55(1), 34-42. https://doi.org/10.1016/j.scijus.2014.06.011

García Moreno, J. y Ortiz Talero, J. (2019). Caracterización composicional y genética del Domo Tapias, y su relación con el Volcán Cerro Machín, Colombia. (Tesis de Pregrado, Universidad de Caldas). https://repositorio.ucaldas.edu.co/

Goad, G. (2018). High-Precision Lead Isotope Analysis on Modern Populations to Determine Geolocation Reliability. (Tesis Máster, University of South Florida). https://digitalcommons.usf.edu/

Gómez-Luna, E., Fernando-Navas, D., Aponte-Mayor, G. y Betancourt-Buitrago, L. A. (2014). Metodología para la revisión bibliográfica y la gestión de información de temas científicos, a través de su estructuración y sistematización. Dyna, 81(184), 158-163. http://dx.doi.org/10.15446/dyna.v81n184.37066

Hedges, R., Clement, J., Thomas, D. y Connell, T. (2007) Collagen Turnover in the Adult Femoral Mid-Shaft: Modeled from Anthropogenic Radiocarbon Tracer Measurements. American Journal of Physical Anthropology 133: 783–895. https://doi.org/10.1002/ajpa.20598

Herrmann, N., Li, Z., Warner, M., Weinand, D. y Soto, M. (2013). Isotopic and Elemental Analysis of the William Bass Donated Skeletal Collection and Other Modern Donated Collections. Department of Justice Report, 248669.

Holobinko, A. (2012). Forensic human identification in the United States and Canada: A review of the law, admissible techniques, and the legal implications of their application in forensic cases. Forensic Science International, 222(1-3), 394-e1. https://doi.org/10.1016/j.forsciint.2012.06.001

Hu, L., Ghartrand, M.M.G, St-Jean G., Lops M. y Bataille., C. (2020). Assessing the Reliability of Mobility Interpretation from a Multi-Isotope Hair Profile on a Traveling Individual. Front. Ecol. Evol. 8:568943. https://doi.org/10.3389/fevo.2020.568943

Juárez, C. (2008). Strontium and geolocation, the pathway to identification for deceased undocumented Mexican border‐crossers: A preliminary report. Journal of Forensic Sciences, 53(1), 46-49. https://doi.org/10.1111/j.1556-4029.2007.00610.x

Kamenov, G. y Curtis, J. (2017). Using carbon, oxygen, strontium, and lead isotopes in modern human teeth for forensic investigations: a critical overview based on data from Bulgaria. Journal of forensic sciences, 62(6), 1452-1459. https://doi.org/10.1111/1556-4029.13462

Kamenov, G., Kimmerle, E., Curtis, J. y Norris, D. (2014). Georeferencing a cold case victim with lead, strontium, carbon, and oxygen isotopes. Annals of Anthropological Practice, 38(1), 137-154. https://doi.org/10.1111/napa.12048

Katzenberg, M. (2008). Stable isotope analysis: A tool for studying past diet, demography, and life history. Biological anthropology of the human skeleton, 2, 413-441. https://doi.org/10.1002/9780470245842.ch13

Keller, A., Regan, L., Lundstrom, C. y Bower, N. (2016). Evaluation of the efficacy of spatiotemporal Pb isoscapes for provenancing of human remains. Forensic Science International, 261, 83-92. https://doi.org/10.1016/j.forsciint.2016.02.006

Komar, D. y Buikstra, J. (2008). Forensic anthropology: contemporary theory and practice. Oxford University Press, USA.

Kramer, R. (2018). Application of Stable Isotopes and Geostatistics to Predict Region of Geographic Origin for Deceased Migrants Recovered in Southern Texas. (Máster of Arts Thesis). In: digital.library.txstate.edu.

Kramer, R., Bartelink, E., Herrmann, N., Bataille, C. y Spradley, K. (2020). Application of stable isotopes and geostatistics to infer region of geographical origin for deceased undocumented Latin American migrants. Forensic Science and Humanitarian Action: Interacting with the Dead and the Living, 425-440. https://doi.org/10.1002/9781119482062.ch27

Krenzer, U. (2006). Compendio de métodos antropológico-forenses para la reconstrucción del perfil osteo-biológico. Serie de Antropología Forense. Guatemala: Centro de Análisis Forense y Ciencias Aplicadas (CAFCA).

Latkoczy, C., Prohaska, T., Watkins, M., Teschler-Nicola, M. y Stingeder G. (2001). Strontium isotope ratio determination in soil and bone samples after on-line matrix separation by coupling ion chromatography (HPIC) to an inductively coupled plasma sector field mass spectrometer (ICP-SFMS). J Anal Atomic Spectrom, 16: 806–811. DOI:10.1039/b102797m

Negrete, S. (2016). "Somos lo que comemos”: relaciones identitarias en un grupo de habitantes de Chinikihá, Chiapas, a través del análisis de la alimentación. Clásico tardío”. (Tesis de Maestría, Escuela Nacional de Antropología e Historia). https://mediateca.inah.gob.mx/

Mantilla, F., Tassinari, C. y Mancini, L. (2006). Estudio de isótopos de C, O, Sr y de elementos de tierras raras (REE) en rocas sedimentarias Cretácicas de la Cordillera Oriental (Dpto. de Santander, Colombia): implicaciones Paleohidrogeológicas. Boletín de Geología, 28(1), 61-80. https://revistas.uis.edu.co/index.php/revistaboletindegeologia/article/view/3317

McLean, S., Ikegaya, H., Saukko, P., Zheng, H., Akutsu, T., Miyamori, D. y Sakurada, K. (2013). A trial of the utilization of stable isotope analysis for the estimation of the geographic origins of unidentified cadavers. Forensic science international, 232(1-3), 237-e1. DOI: 10.1016/j.forsciint.2013.07.019

McLean, S., Ikegaya, H., Saukko, P., Zheng, H., Itoh, K. y Fushiki, S. (2014). The utilization of stable isotope analysis for the estimation of the geographic origins of unidentified cadavers. Forensic science international, 245, 45-50. https://doi.org/10.1016/j.forsciint.2014.10.011

Meier-Augenstein, W. (2007). Stable isotope fingerprinting—Chemical element “DNA”. Forensic human identification: An introduction, 29-53.

Meier-Augenstein, W. (2010). Stable Isotope Forensics: An Introduction to the Forensic Applications of Stable Isotope Analysis. Wiley, Chichester.

Meier-Augenstein, W. y Fraser, I. (2008). Forensic isotope analysis leads to identification of a mutilated murder victim. Science & Justice, 48(3), 153-159. https://doi.org/10.1016/j.scijus.2007.10.010

Misra, K. (2012). Introduction to Geochemistry, Principles and Applications. Wiley-Blackwell.

Odum, H. (1951). The stability of the world strontium cycle: Science, v. 114, p. 407–411. DOI: 10.1126/science.114.2964.407

Poszwa, A., Ferry, B., Pollie, B., Grimaldi, C., Charles-Dominique, P., Loubet, M. y Dambrine, E. (2009). Variations of plant and soil 87Sr/ 86Sr along the slope of a tropical inselberg. Annals of forest science, 66(5), 1-13. https://doi.org/10.1051/forest/2009036

Quiñones, E. (2019). Antropología Forense en Timor Oriental. En Aportes de la antropología forense en la investigación de crímenes de lesa humanidad en Timor Oriental. Santa Marta, Colombia: Editorial Unimagdalena. https://editorial.unimagdalena.edu.co/Editorial/Publicacion/4125

Philp, R. (2007). The emergence of stable isotopes in environmental and forensic geochemistry studies: a review. Environmental Chemistry Letters, 5(2), 57-66. https://doi.org/10.1007/s10311-006-0081-y

Pye, K. (2004). Isotope and trace element analysis of human teeth and bones for forensic. purposes. In: Pye, K. and D.J. Croft (eds), Forensic Geoscience: Principles, Techniques and Applications. The Geological Society London, pp. 215-236. https://doi.org/10.1144/GSL.SP.2004.232.01.20

Rauch, E., Rummel, S., Lehn, C. y Büttner, A. (2007). Origin assignment of unidentified corpses by use of stable isotope ratios of light (bio-) and heavy (geo-) elements—a case report. Forensic Science International, 168(2-3), 215-218. https://doi.org/10.1016/j.forsciint.2006.02.011

Rodríguez, J. (1994). Introducción a la antropología forense: análisis e interpretación de restos óseos humanos. Bogotá: Anaconda.

Romero-Ordoñez, F., Schultz-Güttler, R. y Kogi, K. (2000). Geoquímica del rubidio-estroncio y edad de las esmeraldas colombianas. Geología Colombiana, 25, 221-239. https://revistas.unal.edu.co/index.php/geocol/article/view/31551

Rosero, S., Silva, J., Sial, A., Borrero, C. y Pardo, A. (2014). Quimioestratigrafía de isótopos de estroncio de algunas sucesiones del eoceno-mioceno del cinturón de San Jacinto y el Valle Inferior del Magdalena. Boletín de Geología, 36(1), 15-27. https://revistas.uis.edu.co/index.php/revistaboletindegeologia/article/view/4067/5267

Row, K. (2013). Strontium isotopes and geolocation: the pathway for identification of victims in Medellín, Colombia. (Tesis Máster, Boston University). https://open.bu.edu/

Schaaf, P., Solís, G., Manzanilla, L. R., Hernández, T., Lailson, B. y Horn, P. (2012). Isótopos de estroncio aplicados a estudios de migración humana en el centro de barrio de Teopancazco, Teotihuacan. Estudios arqueométricos del centro de barrio de Teopancazco en Teotihuacan. México: UNAM, 425-448. http://www.iia.unam.mx/directorio/archivos/MANL510125/2012_Manzanilla_LibroEstudiosArqueometricos.pdf

Schoeninger, M. (1995). Stable isotope studies in human evolution. Evolutionary Anthropology: Issues, News, and Reviews, 4(3), 83-98. https://doi.org/10.1002/evan.1360040305

Spradley, M. (2021). Use of craniometric data to facilitate migrant identifications at the United States/Mexico border. American Journal of Physical Anthropology, 175(2), 486-496. https://doi.org/10.1002/ajpa.24241

Stephan, C.N., Amidan, B., Trease, H., Guyomarc’h, P., Pulsipher T. y Byrd. J. (2014). Morphometric Comparison of Clavicle Outlines from 3D Bone Scans and 2D Chest Radiographs: A Shortlisting Tool to Assist Radiographic Identification of Human Skeletons. Forensic Sci, Vol. 59, No. 2, pp. 307-313. https://doi.org/10.1111/1556-4029.12324

Tamayo, A. y Soto, E. (2015). Consideraciones geoquímicas y petrogenéticas para establecer la evolución magmática del Complejo Volcánico Nevado del Huila. Boletín Geológico, (43), 53-62. https://doi.org/10.32685/0120-1425/boletingeo.43.2015.29

Tapias, J., Ramírez, N., Meléndez, M., Gutiérrez, F., Montoya, C. y Diederix, H. (2015). Geological Map of Colombia 2015. Episodes 2017; 40: 201-212. https://doi.org/10.18814/epiiugs/2017/v40i3/017023

Tipple, B. (2015). Isotope Analysis of Hair as a Trace Evidence Tool to Reconstruct Human Movements: Combining Strontium Isotope with Hydrogen/Oxygen Isotope Data. (Technical Report). Retrieved from Department of Justice. (2011-DN-BX-K544).

Tommasini, S., Marchionni, S., Tescione, I., Casalini, M., Braschi, E., Avanzinelli, R. y Conticelli, S. (2018). Strontium isotopes in biological material: A key tool for the geographic traceability of foods and human beings. In Behaviour of Strontium in Plants and the Environment (pp. 145-166). Springer, Cham. https://doi.org/10.1007/978-3-319-66574-0_10

West, A., February, E. y Bowen, G. (2014). Spatial analysis of hydrogen and oxygen stable isotopes (“isoscapes”) in ground water and tap water across South Africa. Journal of Geochemical Exploration, 145, 213-222. https://doi.org/10.1016/j.gexplo.2014.06.009

Wilson, R.J., Bethard, J.D. y E.A. DiGangi. (2011). The Use of Orthopedic Surgical Devices for Forensic Identification. J Forensic Sci, Vol. 56, No. 2, 460-469. https://doi.org/10.1111/j.1556-4029.2010.01639.x

Valenzuela, L., Chesson, L., Bowen, G., Cerling, T. y Ehleringer, J. (2012). Dietary heterogeneity among western industrialized countries reflected in the stable isotope ratios of human hair. PLoS One, 7(3), e34234. https://doi.org/10.1371/journal.pone.0034234

Valenzuela, L., Chesson, L., O'Grady, S., Cerling, T. y Ehleringer, J. (2011). Spatial distributions of carbon, nitrogen and sulfur isotope ratios in human hair across the central United States. Rapid Communications in Mass Spectrometry, 25(7), 861-868. https://doi.org/10.1002/rcm.4934

van Geldern, R. y Barth, J. A. (2016). Oxygen and hydrogen stable isotopes in Earth’s hydrologic cycle. Isotopic landscapes in bioarchaeology, 173-187.

Publicado

2022-03-01

Cómo citar

Chavarro, D. ., Castellanos, D. ., & Quiñones, E. . (2022). Aplicación del análisis de isótopos de estroncio en la identificación humana en Colombia. Revista Criminalidad, 64(1), 193–205. https://doi.org/10.47741/17943108.339

Número

Sección

Estudios criminológicos