A neurobiologia do assassino: aspectos neuroanatômicos, genéticos, bioquímicos, extrínsecos e sociais

Autores

DOI:

https://doi.org/10.47741/17943108.370

Palavras-chave:

Assassinos, distúrbios comportamentais, neurologia forense, comportamento criminoso, psicopatología

Resumo

A questão de pôr que alguém quereria matar outra pessoa ainda não tem uma única resposta: sobrevivência, ódio, prazer, vingança? Diante deste fenômeno, as neurociências oferecem uma área relevante e atual de compreensão para responder a esta pergunta. Vários estudos clínicos e de neuroimagem têm mostrado diversas alterações anatômicas, bioquímicas e genéticas e sua relação com uma variedade de redes neurais associadas a comportamentos agressivos. Sub-regiões no córtex pré-frontal, amígdala, hipocampo e lobo temporal desempenham um papel importante no desenvolvimento e funcionamento da biologia da agressão. Variações genéticas na regulação de proteínas e neurotransmissores como a serotonina e a dopamina foram estabelecidas como mediadores de comportamentos agressivos e homicidas. As interações epigenéticas e os mediadores sociais representam fatores de risco adicionais importantes para a agressão. Este artigo sistematiza alguns dos fatores que influenciam o comportamento homicida. Ela delineia seus fatores de risco e correlatos neurobiológicos e fornece informações baseadas em evidências para ajudar na prevenção de tais comportamentos, na compreensão multidimensional do crime e no desenvolvimento de intervenções eficazes baseadas na neurociência cognitiva forense.

Downloads

Não há dados estatísticos.

Referências

Aguilar-Bustamante, M., & Correa-Chica, A. (2017). Análisis de las variables asociadas al estudio del liderazgo: una revisión sistemática de la literatura. Universitas Psychologica, 16(1), 1-13. https://doi.org/10.11144/Javeriana.upsy16-1.avae

Alcázar Córcoles, M. Á. (2007). Patrones de conducta y personalidad antisocial en adolescentes: estudio transcultural: El Salvador, México y España. [Tesis Doctoral]. Universidad Autónoma de Madrid. https://repositorio.uam.es/bitstream/handle/10486/1702/6668_alcazar_corcoles.pdf

Aluja, A., Garcia, L. F., Blanch, A., De Lorenzo, D., & Fibla, J. (2009). Impulsive-disinhibited personality and serotonin transporter gene polymorphisms: association study in an inmate’s sample. Journal of Psychiatric Research, 43(10), 906-914. https://doi.org/10.1016/j.jpsychires.2008.11.008

Anckarsäter, H. S. (2005). Clinical neuropsychiatric symptoms in perpetrators of severe crimes against persons. Nordic Journal of Psychiatry, 59(4), 246-252. https://doi.org/10.1080/08039480500213709

Archer, J. (2009). The nature of human aggression. International Journal of Law and Psychiatry, 32(4), 202-208. https://doi.org/10.1016/j.ijlp.2009.04.001

Barbas, H., Zikopoulos, B., & Timbie, C. (2011). Sensory pathways and emotional context for action in primate prefrontal cortex. Biological Psychiatry, 69(12), 1133-1139. https://doi.org/10.1016/j.biopsych.2010.08.008

Barnes, J. C., Beaver, K. M., & Boutwell, B. B. (2013). A functional polymorphism in a serotonin transporter gene (5-HTTLPR) interacts with 9/11 to predict guncarrying behavior. Plos One, 8(8), e70807. https://doi.org/10.1371/journal.pone.0070807

Baron-Cohen, S. (2012). The science of evil: On empathy and the origins of cruelty. Basic Books. https://www.goodreads.com/book/show/11044200-the-science-of-evil

Bechara, A., Damasio, H., Damasio, A. R., & Lee, G. P.(1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. Journal of Neuroscience, 19(13), 5473-5481. https://doi.org/10.1523/JNEUROSCI.19-13-05473.1999

Beck, A., & Heinz, A. (2013). Alcohol-related aggression—social and neurobiological factors. Deutsches Ärzteblatt International, 110(42), 711. https://doi.org/10.3238/arztebl.2013.0711

Bertone, M. S., Diaz-Granados, E. A., Vallejos, M., & Muniello, J. (2017). Differences in social cognition between male prisoners with antisocial personality or psychotic disorder. International Journal of Psychological Research, 10(2), 16-25. https://sernoticia.com/index.php?pag=m_blog&gad=detalle_entrada&entry=1434

Cleary, S., & Luxenburg, J. (1993). Serial murderers: Common background characteristics and their contribution to causation. American Society of Criminology.

Cloninger, C. R., Sigvardsson, S., Bohman, M., & Knorring, A. L. von. (1982). Predisposition to petty criminality in Swedish adoptees: II. Cross-fostering analysis of gene-environment interaction. Archives of General Psychiatry, 39(11), 1242–1247. https://doi.org/10.1001/archpsyc.1982.04290110010002

Coccaro, E. F., McCloskey, M. S., Fitzgerald, D. A., & Phan, K. L. (2007). Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biological Psychiatry, 62(2), 168-178. https://doi.org/10.1016/j.biopsych.2006.08.024

Codina, L. (2017). No lo llame análisis bibliográfico, llámelo revisión sistematizada. Y cómo llevarla a cabo con garantías: Systematized Reviews + SALSA Framework. https://www.lluiscodina.com/revisionsistematica-salsa-framework

Cope, L. M., Ermer, E., Gaudet, L. M., Steele, V. R., Eckhardt, A. L., Arbabshirani, M., Caldwell, M., Calhoun, V. D., & Kiehl, K. A. (2014). Abnormal brain structure in youth who commit homicide. Neuroimage: Clinical, 4, 800-807. https://doi.org/10.1016/j.nicl.2014.05.002

Costello, E. J., Compton, S. N., Keeler, G., & Angold, A. (2003). Relationships between poverty and psychopathology: A natural experiment. Jama, 290(15), 2023-2029. https://doi.org/10.1001/jama.290.15.2023

Cruz, A. R., de Castro-Rodrigues, A., & Barbosa, F. (2020). Executive dysfunction, violence and aggression. Aggression and Violent Behavior, 51, 101380. https://doi.org/10.1016/j.avb.2020.101380

Cupaioli, F. A., Zucca, F. A., Caporale, C., Lesch, K. P., Passamonti, L., & Zecca, L. (2021). The neurobiology of human aggressive behavior: neuroimaging, genetic, and neurochemical aspects. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 106(2), 110059. https://doi.org/10.1016/j.pnpbp.2020.110059

Daly, M., & Wilson, M. (2003). Evolutionary psychology of lethal interpersonal violence. En International handbook of violence research (pp. 569-588). Springer. https://doi.org/10.1007/978-0-306-48039-3_29

Dambacher, F., Sack, A. T., Lobbestael, J., Arntz, A., Brugman, S., & Schuhmann, T. (2015). Out of control: Evidence for anterior insula involvement in motor impulsivity and reactive aggression. Social Cognitive and Affective Neuroscience, 10(4), 508-516. https://doi.org/10.1093/scan/nsu077

Darby, R. R., Horn, A., Cushman, F., & Fox, M. D. (2018). Lesion network localization of criminal behavior. Proceedings of the National Academy of Sciences, 115(3), 601-606. https://doi.org/10.1073/pnas.1706587115

Del Bene, V. A., Foxe, J. J., Ross, L. A., Krakowski, M. I., Czobor, P., & De Sanctis, P. (2016). Neuroanatomical abnormalities in violent individuals with and without a diagnosis of schizophrenia. Plos One, 11(12), e0168100. https://doi.org/10.1371/journal.pone.0168100

Dutton, D. G. (2002). The neurobiology of abandonment homicide. Aggression and Violent Behavior, 7(4), 407-421. https://doi.org/10.1016/S1359-1789(01)00066-0

Dutton, D. G., & Hart, S. D. (1992). Evidence for long-term, specific effects of childhood abuse and neglect on criminal behavior in men. International Journal of Offender therapy and comparative criminology, 36(2), 129-137. https://doi.org/10.1177/0306624X9203600205

Fanning, J. R., Keedy, S., Berman, M. E., Lee, R., & Coccaro, E. F. (2017). Neural correlates of aggressive behavior in real time: a review of MRI studies of laboratory reactive aggression. Current Behavioral Neuroscience Reports, 4(2), 138-150. https://doi.org/10.1007/s40473-017-0115-8

Farah, T., Ling, S., Raine, A., Yang, Y., & Schug, R. (2018). Alexithymia and reactive aggression: The role of the amygdala. Psychiatry Research: Neuroimaging, 281, 85-91. https://doi.org/10.1016/j.pscychresns.2018.09.003

Forbes, C. E., & Grafman, J. (2010). The role of the human prefrontal cortex in social cognition and moral judgment. Annual Review of Neuroscience, 33, 299-324. https://doi.org/10.1146/annurevneuro-060909-153230

Fournier, L. F. (2021). Mental health problems, traumatic brain injury, and offending behavior among persons incarcerated in a county jail (thesis doctoral). University of South Florida. https://bit.ly/3sk1rNw

Fox, J. A., & Levin, J. (2013). Overkill: Mass murder and serial killing exposed. Springer. https://bit.ly/3z4Wtrz

Gao, Y., Jiang, Y., Ming, Q., Zhang, J., Ma, R., Wu, Q., Dong, D., Guo, X., Liu, M., Wang, X., Situ, W., Pauli, R., & Yao, S. (2020) Gray Matter Changes in the Orbitofrontal-Paralimbic Cortex in Male Youths With Non-comorbid Conduct Disorder. Frontiers in Psychology. 11, 843. https://doi.org/10.3389/fpsyg.2020.00843

Goetz, A. T. (2010). The evolutionary psychology of violence. Psicothema, 22(1), 15-21. https://www.psicothema.com/pi?pii=3690

Gogolla, N. (2017). The insular cortex. Current Biology, 27(12), R580-R586. https://doi.org/10.1016/j.cub.2017.05.010

Gopal, A., Clark, E., Allgair, A., D’Amato, C., Furman, M., Gansler, D. A., & Fulwiler, C. (2013). Dorsal/ventral parcellation of the amygdala: relevance to impulsivity and aggression. Psychiatry Research: Neuroimaging, 211(1), 24-30. https://doi.org/10.1016/j.pscychresns.2012.10.010

Gorodetsky, E., Bevilacqua, L., Carli, V., Sarchiapone, M., Roy, A., Goldman, D., & Enoch, M. A. (2014). The interactive effect of MAOA‐LPR genotype and childhood physical neglect on aggressive behaviors in Italian male prisoners. Genes, Brain and Behavior, 13(6), 543-549. https://doi.org/10.1111/gbb.12140

Grafman, J., Schwab, K., Warden, D., Pridgen, A., Brown, H. R., & Salazar, A. M. (1996). Frontal lobe injuries, violence, and aggression: a report of the Vietnam Head Injury Study. Neurology, 46(5), 1231-1231. https://doi.org/10.1212/WNL.46.5.1231

Haberstick, B. C., Lessem, J. M., Hewitt, J. K., Smolen, A., Hopfer, C. J., Halpern, C. T., Halpern, T. C., Killeya-Jones, L. A., Boardman, J. D., Tabor, J., Siegler, I. C., Williams, R. B., & Harris, K. M. (2014). MAOA genotype, childhood maltreatment, and their interaction in the etiology of adult antisocial behaviors. Biological Psychiatry, 75(1), 25-30. https://doi.org/10.1016/j.biopsych.2013.03.028

Haller, J., & Haller, J. (2014). Neurobiological bases of abnormal aggression and violent behaviour. Springer. https://doi.org/10.1007/978-3-7091-1268-7.

Hiser, J., & Koenigs, M. (2018). The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology. Biological Psychiatry, 83(8), 638-647. https://doi.org/10.1016/j.biopsych.2017.10.030

Hofhansel, L., Weidler, C., Votinov, M., Clemens, B., Raine, A., & Habel, U. (2020). Morphology of the criminal brain: gray matter reductions are linked to antisocial behavior in offenders. Brain Structure and Function, 225(7), 2017-2028. https://doi.org/10.1007/s00429-020-02106-6

Holz, N., Boecker, R., Buchmann, A. F., Blomeyer, D., Baumeister, S., Hohmann, S., Jennen-Steinmetz, C., Wolf, I., Rietschel, M., Witt, S. H., Plichta, M. M., Meyer-Lindenberg, A., Schmidt, M. H., Esser, G., Banaschewski, T., Brandeis, D., & Laucht, M. (2016). Evidence for a sex-dependent MAOA× childhood stress interaction in the neural circuitry of aggression. Cerebral Cortex, 26(3), 904-914. https://doi.org/10.1093/cercor/bhu249

Howner, K., Eskildsen, S. F., Fischer, H., Dierks, T., Wahlund, L. O., Jonsson, T., Wiberg, M. K., & Kristiansson, M. (2012). Thinner cortex in the frontal lobes in mentally disordered offenders. Psychiatry Research: Neuroimaging, 203(2-3), 126-131. https://doi.org/10.1016/j.pscychresns.2011.12.011

Janes, S., O’Rourke, S., & Schwannauer, M. (2021). Assessing the cognitive contributors to violence. Social Science Protocols, 4, 1-16. https://doi.org/10.7565/ssp.v4.5213

Jensen, K. P., Covault, J., Conner, T. S., Tennen, H., Kranzler, H. R., & Furneaux, H. M. (2009). A common polymorphism in serotonin receptor 1B mRNA moderates regulation by miR-96 and associates with aggressive human behaviors. Molecular Psychiatry, 14(4), 381-389. https://doi.org/10.1038/mp.2008.15

Kiernan, J. A. (2012). Anatomy of the temporal lobe. Epilepsy Research and Treatment, 176157. https://doi.org/10.1155/2012/176157

Krämer, U. M., Jansma, H., Tempelmann, C., & Münte, T. F. (2007). Tit-for-tat: the neural basis of reactive aggression. Neuroimage, 38(1), 203-211. https://doi.org/10.1016/j.neuroimage.2007.07.029

McEllistrem, J. E. (2004). Affective and predatory violence: A bimodal classification system of human aggression and violence. Aggression and Violent Behavior, 10(1), 1-30. https://doi.org/10.1016/j.avb.2003.06.002

McSwiggan, S., Elger, B., & Appelbaum, P. S. (2017). The forensic use of behavioral genetics in criminal proceedings: Case of the MAOA-L genotype. International Journal of Law and Psychiatry, 50, 17-23. https://doi.org/10.1016/j.ijlp.2016.09.005

Nielsen, D. A., Jenkins, G. L., Stefanisko, K. M., Jefferson, K. K., & Goldman, D. (1997). Sequence, splice site and population frequency distribution analyses of the polymorphic human tryptophan hydroxylase intron 7. Molecular Brain Research, 45(1), 145-148. https://doi.org/10.1016/S0169-328X(96)00304-X

Nieuwenhuys, R., Voogd, J., & Huijzen C. van. (2009). El sistema nervioso central humano. Editorial Médica Panamericana.

Nkoana, W., Williams, H., Steenkamp, N., Clasby, B., Knowler, H., & Schrieff, L. (2020). Understanding the educational needs of young offenders: A prevalence study of traumatic brain injury and learning disabilities. International Journal of Educational Development, 78, 102261. https://doi.org/10.1016/j.ijedudev.2020.102261

Nobile, M., Giorda, R., Marino, C., Carlet, O., Pastore, V., Vanzin, L., Bellina, M., Molteni, M., & Battaglia, M. (2007). Socioeconomic status mediates the genetic contribution of the dopamine receptor D4 and serotonin transporter linked promoter region repeat polymorphisms to externalization in preadolescence. Development and Psychopathology, 19(4), 1147-1160. https://doi.org/10.1017/S0954579407000594

Pardini, D. A., Raine, A., Erickson, K., & Loeber, R. (2014). Lower amygdala volume in men is associated with childhood aggression, early psychopathic traits, and future violence. Biological Psychiatry, 75(1), 73-80. https://doi.org/10.1016/j.biopsych.2013.04.003

Pezawas, L., Meyer-Lindenberg, A., Drabant, E. M., Verchinski, B. A., Munoz, K. E., Kolachana, B. S., Egan, M. F., Mattay, V. S., Haririm, A. R., & Weinberger, D. R. (2005). 5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression. Nature Neuroscience, 8(6), 828-834. https://doi.org/10.1038/nn1463

Redondo Illescas, S., & Pueyo, A. A. (2007). La psicología de la delincuencia. Papeles del Psicólogo, 28(3), 147-156. https://pesquisa.bvsalud.org/portal/resource/pt/ibc-64139

Reid, S., Katan, A., Ellithy, A., Della Stua, R., & Denisov, E. V. (2019). The perfect storm: Mapping the life course trajectories of serial killers. International Journal of Offender Therapy and Comparative Criminology, 63(9), 1621-1662. https://doi.org/10.1177/0306624X19838683

Rodríguez, C., Lorenzo, O., & Herrera, L. (2005). Teoría y práctica del análisis de datos cualitativos. Proceso general y criterios de calidad. Revista Internacional de Ciencias Sociales y Humanidades, 15(2). 133-154. http://biblioteca.udgvirtual.udg.mx/jspui/handle/123456789/1038

Sandoval-Obando, E. (2020). Caracterización del trastorno por videojuegos: ¿una problemática emergente? Pensamiento Psicológico, 18(1), 87-102. https://doi.org/10.11144/javerianacali.ppsi18-1.ctvp

Sano, K., Mayanagi, Y., Sekino, H., Ogashiwa, M., & Ishijima, B. (1970). Results of stimulation and destruction of the posterior hypothalamus in man. Journal of Neurosurgery, 33(6), 68-707. https://doi.org/10.3171/jns.1970.33.6.0689

Schiffer, B., Müller, B. W., Scherbaum, N., Hodgins, S., Forsting, M., Wiltfang, J., Gisewsky, E., & Leygraf, N. (2011). Disentangling structural brain alterations associated with violent behavior from those associated with substance use disorders. Archives of General Psychiatry, 68(10), 1039-1049. https://doi.org/10.1001/archgenpsychiatry.2011.61

Schwarzbold, M., Diaz, A., Martins, E. T., Rufino, A., Amante, L. N., Thais, M. E., Quevedo, J., Hohl, A., Linhares, M. N., & Walz, R. (2008). Psychiatric disorders and traumatic brain injury. Neuropsychiatric Disease and Treatment. 4(4), 797–816. https://doi.org/10.2147/ndt.s2653

Seidenwurm, D., Pounds, T. R., Globus, A., & Valk, P. E. (1997). Abnormal temporal lobe metabolism in violent subjects: correlation of imaging and neuropsychiatric findings. American Journal of Neuroradiology, 18(4), 625-631. http://www.ajnr.org/content/18/4/625.short

Söderström, A. H. (2005). Clinical neuropsychiatric symptoms in perpetrators of severe crimes against persons. Nordic Journal of Psychiatry, 59(4), 246-252. https://doi.org/10.1080/08039480500213709

Stone, M. H. (1989). Murder. Psychiatric Clinics of North America, 12(3), 643-651. https://doi.org/10.1016/S0193-953X(18)30419-2

Tateno, A., Jorge, R. E., & Robinson, RG. (2003) Clinical correlates of aggressive behavior after traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 15(2), 155-160. https://neuro.psychiatryonline.org/doi/full/10.1176/jnp.15.2.155

Tielbeek, J. J., Johansson, A., Polderman, T. J., Rautiainen, M. R., Jansen, P., Taylor, M., Tong, X., Lu, Q., Burt, A. S., Tiemeier, H., Viding, E., Plomin, R., Martin, N. G., Heath, A. C., Madden, P. A. F., Montgomery, G., Beaver, K. M., Waldman, I., Gelernter, J., & Posthuma, D. (2017). Genome-wide association studies of a broad spectrum of antisocial behavior. Jama Psychiatry, 74(12), 1242-1250. https://doi.org/10.1001/jamapsychiatry.2017.3069

Tomàs, M., Feixas, M., Bernabeu-Tamayo, M., & Ruiz, J. (2015). La literatura científica sobre rankings universitarios: una revisión sistemática. REDU-Revista de Docencia Universitaria, 13(3), 33-54. http://hdl.handle.net/11162/114922

Tuvblad, C., Narusyte, J., Grann, M., Sarnecki, J., & Lichtenstein, P. (2011). The genetic and environmental etiology of antisocial behavior from childhood to emerging adulthood. Behavior Genetics, 41(5), 629-640. https://doi.org/10.1007/s10519-011-9463-4

Valzelli, L. (1983). Psicobiología de la agresión y la violencia. 1a ed. española. Madrid: Alhambra, (pp. 167-240). Print.

Van der Gronde, T., Kempes, M., El, C. van, Rinne, T., & Pieters, T. (2014) Neurobiological correlates in forensic assessment: A systematic review. Plos One, 9(10), e110672. https://doi.org/10.1371/journal.pone.0110672

Van Heukelum, S., Tulva, K., Geers, F. E., Dulm, S. van, Ruisch, I. H., Mill, J., Viana, J. F., Beckmann, C. F., Buitelaar, J. K., Poelmans, G., Glennon, J C., Vogt, B. A., Martha N. Havenith., & França, A. S. (2021). A central role for anterior cingulate cortex in the control of pathological aggression. Current Biology, 31(11), 2321-2333. https://doi.org/10.1016/j.cub.2021.03.062

Vargas Hernández, B. A. (2021). ¿Por qué se producen altos niveles de homicidio doloso en las alcaldías de la Ciudad de México? Una aproximación configuracional desde la teoría de la desorganización social. Sociológica (México), 36(102), 187-226. http://www.sociologicamexico.azc.uam.mx/index.php/Sociologica/article/view/1674

Walsh, A., & Bolen, J. D. (2016). The neurobiology of criminal behavior: Gene-brain-culture interaction. Routledge. https://doi.org/10.4324/9781315555270

Woermann, F. G., Elst, L. T. van, Koepp, M. J., Free, S. L., Thompson, P. J., Trimble, M. R., & Duncan, J. S. (2000). Reduction of frontal neocortical grey matter associated with affective aggression in patients with temporal lobe epilepsy: an objective voxel by voxel analysis of automatically segmented MRI. Journal of Neurology, Neurosurgery & Psychiatry, 68(2), 162-169. https://doi.org/10.1136/jnnp.68.2.162

Xia, X., Li, Y., Wang, Y., Xia, J., Lin, Y., Zhang, X., Liu, Y., & Zhang, J. (2021). Functional role of dorsolateral prefrontal cortex in the modulation of cognitive bias. Psychophysiology, 58 e13894. https://doi.org/10.1111/psyp.13894

Yang, Y., & Raine, A. (2009). Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a metaanalysis. Psychiatry Research: Neuroimaging 174(2), 81-88. https://doi.org/10.1016/j.pscychresns.2009.03.012

Yang, Y., Raine, A., Han, C. B., Schug, R. A., Toga, A. W., & Narr, K. L. (2010). Reduced hippocampal and parahippocampal volumes in murderers with schizophrenia. Psychiatry Research: Neuroimaging, 182(1), 9-13. https://doi.org/10.1016/j.pscychresns.2009.10.013

Yu, Q., Teixeira, C. M., Mahadevia, D., Huang, Y., Balsam, D., Mann, J. J., Gingrich, J. A., & Ansorge, M. S. (2014). Dopamine and serotonin signaling during two sensitive developmental periods differentially impact adult aggressive and affective behaviors in mice. Molecular Psychiatry, 19(6), 688-698. https://www.nature.com/articles/mp201410

Zaboli, G., Jönsson, E. G., Gizatullin, R., Åsberg, M., & Leopardi, R. (2006). Tryptophan hydroxylase-1 gene variants associated with schizophrenia. Biological Psychiatry, 60(6), 563-569. https://doi.org/10.1016/j.biopsych.2006.03.033

Zahn, R., Moll, J., Krueger, F., Huey, E. D., Garrido, G., & Grafman, J. (2007). Social concepts are represented in the superior anterior temporal cortex. Proceedings of the National Academy of Sciences, 104(15), 6430-6435. https://doi.org/10.1073/pnas.0607061104

Publicado

2023-01-16

Como Citar

Alemán Ortiz, O. F., & Sandoval-Obando, E. . (2023). A neurobiologia do assassino: aspectos neuroanatômicos, genéticos, bioquímicos, extrínsecos e sociais. Revista Criminalidad, 64(3), 137–152. https://doi.org/10.47741/17943108.370

Edição

Seção

Estudos criminológicos